摘要:非侵入负荷辨识机器学习是一种利用机器学习技术,在不干扰系统正常运行的前提下,对电力系统中各种用电设备进行识别和分类的方法。这种方法为电力系统的运行和管理提供了新的思路和手段。
在当今的智能化社会中,非侵入式负荷辨识技术通过分析用户用电行为,对能耗监测和用电安全评估具有重要意义,下面将详细介绍非侵入负荷辨识中的机器学习端到端场景:
1、数据预处理
数据采集:采集用户的总电信号数据,这是非侵入式负荷识别的基础。
信号处理:通过滤波、去噪等信号处理技术,提高数据质量,为后续的特征提取打下基础。
数据量测及处理:将混合的电信号进行负荷分解,获得各个负荷独立运行时的电信号。
2、特征提取
VI轨迹特征:传统方法中采用电流电压(VI)轨迹特征进行负荷识别,但存在特征重叠问题。
彩色VI轨迹特征:为了解决特征重叠问题,提出了基于彩色VI轨迹特征的方法,增强了特征的表达能力。
卷积神经网络模型:利用CNN模型对独立电信号进行特征提取,有效捕获负荷特征。
3、模型训练与识别
轻量级孪生网络:为了解决传统方法中无法识别未知负荷的问题,引入了轻量级孪生网络的模型训练方法。
模型训练:在提取的设备特征上进行模型训练,以便从总体负荷数据中识别特定设备的种类和运行状态。
负荷识别:利用训练好的模型对目标设备进行负荷识别,实现用电行为的精准分析。
4、性能评估与优化
准确率评估:通过对比识别结果与实际负荷,评估模型的准确率。
反馈调整:根据性能评估的结果,对模型进行反馈调整,优化识别效果。
持续学习:随着数据的不断积累,引入持续学习机制,使模型能够适应新的负荷类型和变化。
非侵入负荷辨识在机器学习端到端场景中,从数据采集、特征提取、模型训练与识别,到性能评估与优化,每一步都至关重要,通过不断的技术创新和模型优化,非侵入负荷辨识技术正日益成熟,为能耗监测和用电安全评估提供了强有力的技术支持,随着人工智能技术的进一步发展,非侵入负荷辨识将在智能电网、智能家居等领域发挥更大的作用,为用户带来更加便捷、安全的用电体验。
下面是一个介绍,它概述了非侵入负荷辨识中机器学习的端到端场景:
该介绍综合了上述参考信息中提及的关键步骤和技术方法,为非侵入负荷辨识的机器学习场景提供了一个端到端的概览。
本文来源于互联网,如若侵权,请联系管理员删除,本文链接:https://www.9969.net/12343.html